Superpixel Driven Unsupervised Deep Image Super-Resolution
نویسندگان
چکیده
Most of the existing deep learning-based image super-resolution methods require a large number datasets or ground truth. However, these are not suitable for restoration real with different domains. Recently, Deep Image Prior (DIP) based on single-image explores prior and uses network structure as implicit to recover images, but it ignores explicit information actual itself. The addition can effectively alleviate ill-posed problem in model. Therefore, this paper, we propose an unsupervised (SR) method that segmentation driven. Intuitively, clear has clearer boundary. It will drive neural networks obtain higher performance SR when forcing restored have In order make energy flow into DIP better, use fully convolutional networks-based superpixel method, back propagation inject gradient generated by entropy lower optimization parameters. Experiments show our boundary better than Set5, Set14 BSD100.
منابع مشابه
A Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملDeep Network Cascade for Image Super-resolution
In this paper, we propose a new model called deep network cascade (DNC) to gradually upscale low-resolution images layer by layer, each layer with a small scale factor. DNC is a cascade of multiple stacked collaborative local auto-encoders. In each layer of the cascade, non-local self-similarity search is first performed to enhance high-frequency texture details of the partitioned patches in th...
متن کاملSuper-Resolution with Deep Adaptive Image Resampling
Deep learning based methods have recently pushed the state-of-the-art on the problem of Single Image SuperResolution (SISR). In this work, we revisit the more traditional interpolation-based methods, that were popular before, now with the help of deep learning. In particular, we propose to use a Convolutional Neural Network (CNN) to estimate spatially variant interpolation kernels and apply the...
متن کاملDeep Image Super Resolution via Natural Image Priors
Single image super-resolution (SR) via deep learning has recently gained significant attention in the literature. Convolutional neural networks (CNNs) are typically learned to represent the mapping between low-resolution (LR) and highresolution (HR) images/patches with the help of training examples. Most existing deep networks for SR produce high quality results when training data is abundant. ...
متن کاملSuperpixel clustering with deep features for unsupervised road segmentation
Vision-based autonomous driving requires classifying each pixel as corresponding to road or not, which can be addressed using semantic segmentation. Semantic segmentation works well when used with a fully supervised model, but in practice, the required work of creating pixel-wise annotations is very expensive. Although weakly supervised segmentation addresses this issue, most methods are not de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Processing Letters
سال: 2023
ISSN: ['1573-773X', '1370-4621']
DOI: https://doi.org/10.1007/s11063-023-11288-z